Pubblicazioni

A Reinforcement Learning approach to the management of Renewable Energy Communities

LA SFIDA

Approccio ibrido tra Apprendimento per rinforzo e Controllo Ottimo per massimizzare l’autoconsumo diffuso all’interno della Comunità energetica.

GLI OBIETTIVI

• ottimizzazione energie rinnovabili
• bilanciamento della CER
• riduzione degli sprechi di risorse
• massimizzazione del TIP

IL TEAM

L. Guiducci, G. Palma, M. Stentati, A. Rizzo and S. Paoletti, articolo scientifico presentato alla Conferenza MECO 2023.

Abstract del progetto

Optimal management of renewable energy is an important pillar of environmental sustainability, as it maximizes the use of clean and renewable resources. This article considers the optimal management of a renewable energy community that receives incentives for virtual self-consumption. This incentive scheme has been adopted in the Italian energy framework since 2020.

The optimization problem maximizes the social welfare of the community, which includes the incentive together with the exploitation of renewable energy sources. A key role in such a problem is played by the battery energy storage system (BESS), which is crucial in balancing supply and demand. We propose a novel Reinforcement Learning-based BESS controller, aiming at maximizing the community social welfare by acting in real time and relying only on data available at the current time-step.

Scopri i nostri progetti

La nostra piattaforma Sunlink è progettata per abilitare l’Industria 5.0,
facilitando l’ottimizzazione dell’uso delle risorse energetiche e la produzione sostenibile.

Progetti di ricerca

Pubblicazione scientifica

Reinforcement Learning for Energy Community Management: A European-Scale Study

Efficient management of renewable energy resources is imperative for promoting...

Pubblicazione scientifica

Optimizing Energy Efficiency in Smart Factories:Battery Energy Storage Systems Integration Analysis

In the rapidly evolving scenario of renewable energy technology, the...

Pubblicazione scientifica

Time Series Forecasting for Energy Management: NCPs vs. LSTM.

This paper investigates the effectiveness of Neural Circuit Policies (NCPs)...

it_IT